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Depression (major depressive disorder, MDD) is a common and serious medical

illness. Globally, it is estimated that 5% of adults su�er from depression. Recently,

imaging genetics receives growing attention and become a powerful strategy for

discoverying the associations between genetic variants (e.g., single-nucleotide

polymorphisms, SNPs) and multi-modality brain imaging data. However, most

of the existing MDD imaging genetic research studies conducted by clinicians

usually utilize simple statistical analysismethods and only consider single-modality

brain imaging, which are limited in the deeper discovery of the mechanistic

understanding of MDD. It is therefore imperative to utilize a powerful and

e�cient technology to fully explore associations between genetic variants and

multi-modality brain imaging. In this study, we developed a novel imaging

genetic association framework to mine the multi-modality phenotype network

between genetic risk variants and multi-stage diagnosis status. Specifically,

the multi-modality phenotype network consists of voxel node features and

connectivity edge features from structural magnetic resonance imaging (sMRI)

and resting-state functional magnetic resonance imaging (rs-fMRI). Thereafter,

an association model based on multi-task learning strategy was adopted to

fully explore the relationship between the MDD risk SNP and the multi-modality

phenotype network. The multi-stage diagnosis status was introduced to further

mine the relation among the multiple modalities of di�erent subjects. A

multi-modality brain imaging data and genotype data were collected by us from

two hospitals. The experimental results not only demonstrate the e�ectiveness of

our proposed method but also identify some consistent and stable brain regions

of interest (ROIs) biomarkers from the node and edge features of multi-modality

phenotype network. Moreover, four new and potential risk SNPs associated with

MDD were discovered.
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1. Introduction

Major depressive disorder (MDD) is a serious mental illness
characterized by persistent sadness, lack of energy, loss of interest,
sleep disturbance, and a high risk of suicide, with a high lifetime
prevalence of MDD (16.2%) (1). It already affects about 350
million people worldwide and is expected to be the second most
debilitating disease in the world by 2030 (2). Patients with major
depression are often suicidal and have a risk of suicide that
exceeds 10 times that of the general population (3). However, the
etiology of MDD is still not clear. The pathogenesis varies for each
individual, and an uniform pathogenesis has not been found in the
literature. Currently, the diagnosis of depression mainly depends
on patients clinical symptoms or the scores of Hamilton Depression
Rating Scale (4). Due to human subjectivity, these methods cannot
provide an objective diagnosis. Thus, effective prevention and early
diagnosis are the important and urgent research topic for MDD.

With the rapid development of neuroimaging technology,
magnetic resonance imaging (MRI), functional magnetic resonance
imaging (fMRI), diffusion tensor imaging (DTI), and positron
emission tomography (PET) are widely used for the prediction
and diagnosis of mental illness and neurological disorders (5–7).
Among them, resting-state fMRI (rs-fMRI) can reflect the neural
activity of the brain and thus becomes the most popular brain
imaging technology to discriminate MDD from healthy controls.
Many studies have been made with the intent to explore the
potential neuroimaging biomarkers for MDD diagnosis based on
brain functional connectivity (FC). Yao et al. proposed a temporal
adaptive graph conventional network(GCN), which not only took
advantage of both spatial and temporal information using resting-
state FC patterns and time-series but also explicitly characterized
the subject-level specificity of FC patterns (8). Thereafter, Yao
et al. made the full use of multiple indexes derived from rs-
fMRI and designed a tensor-based multi-index representation
learning framework for fMRI-based MDD prediction (9). Kong
et al. first developed a spatio-temporal GCN framework to
learn discriminative features from FC for automatic diagnosis
and antidepressant treatment response prediction for MDD (10).
Subsequently, this team successively proposed a novel multi-stage
graph fusion networks framework by integrating themultiple stages
of data representations, which fully considered the interactions
between the whitematter and the graymatter (11). Aforementioned
diagnosis methods have the ability to capture dynamic FC
alterations from rs-fMRI, which are considered as potential
neuroimaging biomarkers to aid diagnosis and treatment forMDD.
However, these methods focus on single imaging modality (e.g.,
rs-fMRI) and are limited in discovering the consistent biomarkers
across multiple modalities.

In recent years, high-throughput genotyping technology
coupled with brain neuroimaging provides a great promise to
investigate the role of genetic variation on the brain structure
and function and emerges as a new research field, namely,
imaging genetics. The major task of this field is to measure the
association between genetic variation (e.g., SNP) and neuroimaging
biomarkers extracted from different imaging modalities. The
obtained results may help us to deeper understand the complex
pathogenesis of the diseases (12). Because Alzheimer’s disease
neuroimaging initiative database contains multi-modality imaging

data and genotyping data, most imaging genetic studies of brain
disorders focus on Alzheimer’s disease. Researchers applied the
multi-task learning framework to discover several common brain
regions of interests (ROIs) which are associated with the well-
known AD-risk SNP (APOE rs429358) and disease status by
multi-modality imaging fusion technology (13). Some methods
utilized canonical correlation analysis to measure the association
between multiple genetic variations and neuroimaging data (14).
Though numerous studies focused on imaging genetics for AD
and yielded some interesting results to understand the pathogenic
mechanisms of AD, few studies focused on the imaging genetic
association of MDD by using machine learning technology. Only
some studies from clinicians usually use simple statistical analysis
methods, such as ANVOVA analysis, correlation analysis, and
mediation analysis, to analyze the association between the given
SNP and brain regions from neuroimaging for MDD (15, 16).
Despite these methods being simple, quick and easy, and useful, the
machine learning methods in the recent medical imaging studies
receives unprecedented breakthroughs (5) and have the ability to
automatically and fully explore the association between genetic
variations and neuroimaging.

In this study, our goal was to develop a simple yet powerful
model for the automatic discovery of the association between
genetic risk factors and disease status by using multi-modality
neuroimaging data. Thus, we designed a novel imaging genetic
association framework to mine the multi-modality phenotype
network between genetic risk factors and multi-stage diagnosis
status. This framework can not only identify consistent ROIs
from multi-modality imaging data but also search new risk SNPs
associated with MDD. In detail, the proposed approach consists
of two steps: (i) Constructing the multi-modality phenotype
network. The network of each subject consists of voxel node
features and connectivity edge features, which are extracted from
sMRI and rs-fMRI, respectively. (ii) Building the imaging genetic
association model. Compared with existing simple MDD imaging
genetic methods, our proposed association model utilized multi-
task learning to explore the relationship between the MDD-risk
SNP and the multi-modality phenotype network. Thereafter, multi-
stage diagnosis status are embedded into the association model by
a novel regularization term to fully use the internal relation across
different modalities of different subjects. All the data were collected
from the Affiliated Zhongda Hospital of Southeast University and
the Second Affiliated Hospital of Xinxiang Medical University. The
experimental results show that our method can not only improve
the performance on metrics of root mean squared error and
correlation coefficient but also identify a compact set of common
ROIs across two brain network features, which are closed related to
MDD genetic risk SNP TPH1 rs1799913. Moreover, some new and
potential risk SNPs associated with MDD are discovered.

The contributions of this study are listed as follows:

1. An imaging genetic association model is proposed to fully
explore the relationship between a given MDD-risk SNP TPH1
rs1799913 and the multi-modality phenotype network, which
is constructed by voxel node features and connectivity edge
features from sMRI and rs-fMRI, respectively.

2. The multistage diagnosis status is introduced into the associated
model by a novel regularization term, which brings the ability
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TABLE 1 Demographic statics of subjects.

Hospital ZhongDa XinXiang

subjects HC MD SD HC MD SD

Number 26 34 11 38 44 18

Gender(M/F) 10/16 15/19 4/7 21/17 26/18 7/11

Age 36.69± 13.88 11.09± 4.14 10.09± 5.99 10.74± 4.67 9.89± 4.25 9.44± 4.19

HAM-D24 1.27± 2.16 27.65± 4.68 38.91± 2.26 1.13± 1.85 29.91± 3.66 39.22± 3.95

HC, healthy control; MD, moderate depression; SD, severe depression; M/F, male/female; HAM-D24, Hamilton Depression Scale-24.

to fully use the relationship across the multiple modalities of
different subjects.

3. From our sequencing SNP genotype data, some new and
potential risk SNPs associated with MDD is discovered, which
can help researchers to further investigate the pathogenesis
of MDD.

The rest of the article is organized as follows: Section 2 shows
the demographic statistics of participants and pre-processing of
multi-modality data. Section 3 presents our proposed method to
mine the multi-modality phenotype network between genetic risk
factors and multi-stage diagnosis status. Presentation and analysis
of experimental results are shown in Section 4. Finally, discussion
and conclusion are given in Section 5 and 6, respectively.

2. Data source and preprocessing

2.1. Participants

This study-utilized datasets were obtained from two hospitals,
namely, the Affiliated Zhongda Hospital of Southeast University
and the Second Affiliated Hospital of Xinxiang Medical University.
The patients were recruited through the inpatient and outpatient
departments of psychiatry in thementioned two hospitals, while the
healthy controls (HCs) were recruited from media advertising and
community posting. The whole research procedures adhered to the
Declaration of Helsinki. All patients signed the informed consent
document and met an identical inclusion criteria as follows: (1)
They met the criteria listed in Diagnostic and Statistical Manual
of Mental Disorder (Fourth Edition); (2) they were in the first
depressive episode, and the age of onset was over 18 years old;
(3) they got a Hamilton Depression Scale-24 (HAM-D24) scores
≥ 20; (4) the absence of other major psychiatric illness history;
(5) the absence of primary neurodegenerative disorders, including
dementia or stroke; (6) no substance abuse or dependence (drug,
caffeine, nicotine, alcohol, or others), head trauma, or loss of
consciousness; (7) no cardiac or pulmonary disease which could
influence the MRI scan. HC subjects met the (4) – (7) rules of
the above inclusion criteria and were required to get a HAM-D24
score ≤ 8.

After removing poor quality images due to head motion or
ghost intensity, this study contained 26 HCs and 45 patients
with MDD from the Affiliated ZhongDa Hospital of Southeast
University, and 38 HCs and 62 patients withMDD from the Second
Affiliated Hospital of XinXiang Medical University. Thereafter, we
utilized HAM-D24 scores to assess depression severity. A total of

107 patients with MDD (HAM-D24 scores ≥ 20) can be further
divided into two subgroups: the HAM-D24 score of 20–34 points
was defined as moderate depression (MD) and a HAM-D24 score
of ≥ 35 was defined as severe depression (SD) (17). The detailed
demographic of subjects are shown in Table 1.

2.2. Magnetic resonance imaging (MRI) data
acquisition and preprocessing

All participants underwent MRI scans at the baseline. MRI data
were acquired using a 3.0 T Siemens scanner (Siemens, Erlangen,
Germany) with a 12-channel head coil. The head of all subjects
was immobilized with pads to minimize head movements. High-
resolution 3D T1-weighted scan using a magnetization-prepared
fast gradient echo (MPRAGE) sequence was performed according
to the following parameters: repetition time (TR) = 1,900 ms, echo
time (TE) = 2.48 ms, flip angle (FA) = 9◦, acquisition matrix = 256
× 256, field of view (FOV) = 250 × 250 mm2, thickness = 1.0 mm,
gap = 0, time = 4 min 18 s, and volume = 176. rs-fMRI parameters
were as follows: TR = 2,000, msTE = 25 ms, FA = 90◦, acquisition
matrix = 64 × 64, FOV = 240 × 240 2, thickness = 3.0 mm, gap =
0 mm, axial slice = 36, volume = 240; in-plane resolution parallel to
the anterior-posterior conjunction = 3.75× 3.75 2, and acquisition
time = 8 min. During the scan, subjects were asked to lie on their
backs with their hands naturally resting on their sides. All subjects’
heads were held in place with pads to minimize head movement.
Ear plugs were used to reduce the noise of the scanner. Subjects
were asked to relax their bodies, open their eyes, stay awake, and not
think about anything specific to avoid falling asleep. Images were
checked immediately after scanning to ensure quality, and scans
were repeated if necessary.

For quality control, all image data were examined by two
experienced radiologists. The rs-fMRI images were preprocessed
using the Resting State Functional Data Processing Assistant
(DPARSF 2.3 Advanced) MRI toolkit, which combines the Resting
State Functional MRI Toolkit (REST, http://www.restfmri.net) and
the Statistical Parametric Mapping Package (SPM, https://www.
fil.ion.ucl.ac.uk/spm/) programs (18). The first 10 time points
were excluded to ensure stable longitudinal magnetization and
to accommodate the inherent scanner noise. The remaining 230
images were processed sequentially according to the following
steps: (1) correction for time differences and head motion using
the 36th slice as the slice time of the reference slice (participants
with maximum head motion displacement greater than 1.5 mm
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in any direction [x, y, or z] or angular motion greater than 1.5◦

were excluded from the analysis); (2) T1 co-alignment with the
functional image and subsequent reorientation; and (3) for spatial
normalization, T1-weighted anatomical images were segmented
into the white matter, the gray matter, and the cerebrospinal
fluid and subsequently normalized to the Montreal Neurological
Institute (MNI) space using transform parameters estimated by
a uniform segmentation algorithm. These transform parameters
were applied to the functional images, and the images were
resampled with 3 mm isotropic voxels; (4) spatial smoothing was
performed with a 4 mm full-width at half-peak (FWHM) isotropic
Gaussian kernel; linear trends within each voxel time series were
removed; interference signals (white matter, cerebrospinal fluid
signals, and head motion parameters were calculated using rigid
body six correction) and spiked regression volumes were regressed;
and finally, a temporal bandpass (0.01–0.08 Hz) to minimize low-
frequency drift and filter out high-frequency noise was performed.

2.3. SNP genotype data sequencing and
processing

DNA genotyping was performed by Tianhao Biotechnology
(Shanghai, China), and the standard protocol was employed
to extract DNA from blood. The pre-designed Illumina next
sequencing and array technology (Illumina Inc., San Diego, CA,
USA) were utilized to determine the SNP genotypes in genes.
Thereafter, we applied PLINK (v1.9) software to calculate the
Hardy–Weinberg equilibrium (HWE) test, linkage disequilibrium
statistics, and allele and genotype frequencies (19). After removing
missing or incorrect values, the retained 5897 SNPs were used in
this study.

Genetic risk variants can help researchers understand the
relevant diseases of biological mechanism and provide an effective
hypothesis for drug design. In this study, we focused on fully to
explore the relationship between a given risk SNP and quantitative
traits of the brain structure and functional level. Some researchers
have implicated a large number of gene-related depression,
including CACNA1E, BDNF, CRHR1, GSK3β , TPH1, and so on,
see those in the systematic review (20). However, different from
Alzheimer’s disease with a well-known risk SNP APOE rs429358,
there were no consistent gene hypotheses for the pathogenesis of
MDD. SNPedia (http://www.SNPedia.com) is a wiki resource of the
functional consequences of human genetic variation as published
in peer-reviewed studies. We searched the related genetic-risk
SNP associated with MDD in the SNPedia database. Among the
retained 5897 SNPs, only TPH1 rs1799913 is successfully matched.
Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in the
biosynthesis of serotonin (5-HT) and haplotype analysis indicates
that TPH-1 associates with MD. In literature (21), six SNPs were
found at linkage disequilibrium in both patients and control
subjects, but only one SNP (rs1799913) significantly associated
with MD by single marker association analysis. This SNP, also
known in the literature as SNP A779C, has been associated with
cerebrospinal fluid (CSF) 5-hydroxyindoleacetic acid (5-HIAA)
concentrations, and several reports have shown its association with
suicidal behavior (22, 23).

Thus, TPH1 rs1799913 was used in the following experiments
to verify our proposed model. TPH1 rs1799913 value was coded in
an additive fashion as 0, 1, and 2, where the alleles were divided into
major andminor alleles by genotype frequency, and the major allele
was coded as “0,” the minor allele as “2,” and the heterozygote of the
remaining alleles as “1” (19).

3. Method

Recently, most of the neuroimaging genomic studies using
machine learning technology focus on Alzheimer’s disease, and few
studies focus the pathogenesis of MDD. These methods usually
research the association between genetic variants and structural
imaging but ignore the functional connectivity information
between various brain regions. As it is well-known, the human
brain is a highly complex network, which contains higher-order
connectivity information to help understanding the pathogenesis
of diseases. Therefore, our model utilized the brain rs-fMRI
and sMRI of each subjects as the input. The overview of our
proposed model is shown as Figure 1. First, the network voxel
node features and connectivity edge features were extracted from
sMRI and rs-fMRI scans based on Automated Anatomical Labeling
(AAL), respectively. After that, a multi-modality association
model-introduced multi-stage diagnosis status of subjects was
proposed to fully explore the relationship between two brain
features and a given risk MDD SNP (TPH1 rs1799913) in
high confidence.

3.1. Building the multi-modality phenotype
network

In this study, each subject builds a multi-modality brain
phenotype network. The node and edge features of brain network
were extracted from sMRI and rs-fMRI, respectively.

After the preprocessing sMRI data, the voxel-based
morphometry (VBM) of each subject were obtained from the
normalized gray matter density maps, which were created in the
MNI space as 2 × 2 × 2mm3 voxels. Thereafter, we aligned VBM
to each participant’s same visit scan and further extracted 116 ROI
level measurements of mean gray matter densities based on the
AAL template. In our proposed method, each ROI is modeled as a
single node of multi-modality brain network. Thus, each subject
could produce one set of node features.

For rs-fMRI data, a functional connectivity network usually
is constructed for representing each subject, with each node
denoting a pre-defined brain ROI and each edge representing
the pairwise functional connection between ROIs. In this study,
we extracted the mean time series of each ROI based on
the AAL template and normalized them with zero mean and
unit variance. After that, functional connectivity networks were
generated by using the Pearson correlation coefficient and hence
could capture the correlation between the BOLD signals of
paired ROIs.

Due to the psychiatric disorders with abnormal topological
properties of brain networks, many graph theory-based methods
have played an important role in the human brain disorder
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FIGURE 1

The overview of our proposed model.

analysis. Among them, clustering coefficient (CC) is one of the
most popular methods and reflects local clustering properties
of the brain network (24). Therefore, after constructing the
functional connectivity network, the clustering coefficients can be
calculated by

CCW(i) =
2

ki(ki − 1)

∑

j,h

(wij · wih · wjh), (1)

where wij, wih, and wjh are the connection weights between node i
and j, between node i and h, and between node j and h, respectively.
Scaled for weights wij, wih, and wjh, that is, wij ←− wij/max(w),
wih ←− wih/max(w), wjh ←− wjh/max(w), max(w) denotes the
maximum connection weight in the brain network. The number of
edges connected to node i is denoted by ki. Finally, we extracted
a set of clustering coefficients from the functional connectivity
networks as the connectivity edge furthers of the multi-modality
phenotype network. Thus, each subject could produce one set of
edge features.

3.2. Associations between genotype and
multi-modality phenotype network

After building the multi-modality phenotype network of each
subject, pathological alterations are considered to be abnormal
changes in phenotype networks. Since the network node and edge
features consist of VBM from sMRI and clustering coefficients
from rs-fMRI, abnormal changes are closely related to associated
ROIs and significant connectivity edges. In this study, we suppose
that there are N subjects, with each one represented by a multi-
modality phenotype network. Given M modalities of phenotypes
Xm = [Xm

1 , ...,X
m
n , ...,X

m
N ]

T ∈ RN×d as the input and the
corresponding response value() y = [y1, ..., yn, ..., yN]T ∈ RN

as the output, where d is the number of node and edge
features dimensionality. Let wm ∈ Rd denote the linear
discriminant function corresponding to the m-th modality. Then
the multi-modality network phenotype association model can be
formulated as:

min
W

1

2

M
∑

m=1

∥

∥y− Xmwm
∥

∥

2
2 + λ ‖W‖2,1 , (2)

where W = [w1,w2, ...,wM] ∈ Rd×M is the weight matrix, and
each row wj represents the vector of coefficients assigned to the j-th
features across multiple modalities. It is worth noting that Equation
(2) adds the L2,1-norm regularization term, ‖W‖2,1 =

∑d
j=1

∥

∥wj

∥

∥

2,
which is a “group-sparsity” regularizer and penalizes all coefficients
in the same row of matrixW for joint feature selection. This means
that our proposed modal can force only a small number of features
to be selected across multiple modalities. The regularization
parameter λ is used to balance the contributions of two terms
in Equation (2). The larger the value of λ, the fewer the features
are selected.

3.3. Introduction multi-stage diagnosis
status into the association model

One disadvantage of the aforementioned multi-modality
association model is that it only considers the relationship
between the multiple modalities of the same subject and ignores
the relationship between imaging phenotypes and diagnosis
status among subjects. In order to overcome this limitation,
we made full use of the multi-stage diagnosis status of each
subjects, i.e., HC, SD, and MD, and then introduced a novel
regularization term that can embed the multi-stage diagnosis status
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TABLE 2 Detailed descriptions of various comparisons.

Comparison Modality Diagnosis Description

SM Node No

Using Lasso (Least absolute shrinkage and selection operator) to detect a sparse significant subset
from node or edge features.

SM Edge No

MSD-SM Node Yes

MSD-SM Edge Yes

CM - No Concatenating node and edge features, and then using Lasso to detect a sparse significant subset from
combined features.

MSD-CM - Yes

MM Node No

Detecting a sparse subset of common ROIs from node and edge features.
MM Edge No

MSD-MM Node Yes

MSD-MM Edge Yes

of MDD:

N
∑

i,j

∥

∥

∥
(wm)Txmi − (wm)Txmj

∥

∥

∥

2

2
Smij = 2(wm)T(Xm)TLmXmwm, (3)

where Lm = Dm − Sm denotes a Laplacian matrix for the m-th
modality, where Dm is the diagonal matrix and each element is
defined by Dm

ij =
∑N

j=1 S
m
ij . In this study, S = [Smij ] ∈ Rn×n×m

represents a similarity matrix which measures the similarity
between each pair of subjects on the m-th modality and can be
defined as

Smij =

{

1, if xmi and xmj are from the same class inm-th modality

0, otherwise.
(4)

The similarity between subjects within the same class and
modality can be defined as 1; otherwise, it is 0. The purpose of
Equation (3) is to enforce these subjects from the same class and
modality to be close to each other in the label space. When xmi
and xmj are from the same class in the m-th modality, the distance

between (wm)Txmi and (wm)Txmj should be as small as possible in
the label space.

In this study, we introduced the multi-stage diagnosis status
into the multimodality association model by incorporating the
regularizer (3) into Equation (2). The objective function of
our proposed association model (MSD-MM) can be formulated
as follows:

min
W

1

2

M
∑

m=1

∥

∥y− Xmwm
∥

∥

2
2 + λ1 ‖W‖2,1 + λ2

M
∑

m=1

(wm)T

(Xm)TLmXmwm, (5)

where parameter λ1 and λ2 are used to control two regularization
terms, respectively. Their values can be determined by inner cross-
validation on training data. From the objective function Equation
(6), the MSD-MMmodel can not only jointly select a sparse subset
of common features from multi-modality data but also fully use
the prior diagnosis information among subjects. To efficiently solve
the objective function in Equation (6), we used the Nesterov’s
accelerated proximal gradient optimization algorithm (25).

4. Experimental results and analysis

4.1. Experimental settings

In our experiments, we adopted two evaluation metrics, i.e.,
root mean squared error (RMSE) and correlation coefficient (CC),
which are wildly used to measure performance regression and
association analysis between the predicted and actual response
values, respectively.

The five-fold cross validation strategy is implemented to
validate the effectiveness of our proposed method. For the
parameters λ1 and λ2 of regularization in Equation (5), we tuned
them from 10−5, 3× 10−5, 10−4, 3× 10−4, ..., 3 and determined
their values by the nested five-fold cross validation on the
training dataset.

In this study, we compared the single-modality (SM) method,
concatenate-modality (CM) method, and multimodality (MM)
method with/without multi-stage diagnosis status. In Table 2, SM,
CM, and MM are conventional methods without diagnosis status.
Since one contribution of this study is the introduction of diagnosis
status, which provide more prior knowledge, MSD-SM and MSD-
CM are improved SM and CM methods incorporating multi-stage
diagnosis status, respectively. MSD-MM is our proposed method,
which simultaneously considers the multi-modality images and
multi-stage diagnosis status. The detailed description of various
comparisons are shown in Table 2.

4.2. Association between risk SNP and the
multi-modality network phenotype

We compared our proposed MSD-MM method with
conventional methods without diagnosis status (including SM,
CM, and MM) and improved methods with diagnosis status
(including MSD-SM and MSD-CM). In order to eliminate the bias
of random division, we performed five times independent and
non-repetitive five-fold cross validation. Thereafter, the average
results of RSEM and CC on the training and testing data on node
and edge modalities were calculated, respectively, as shown in
Table 3.
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TABLE 3 Comparison of regression performance on risk SNP TPH1 rs1799913 by di�erent methods.

Method RMSE (mean ± std) CC (mean ± std)

Train Test Train Test

SM Node 1.3107± 0.1007 1.3644± 0.1654 0.0465± 0.0440 0.0121± 0.0045

SM Edge 1.3454± 0.2189 1.5456± 0.1566 0.0983± 0.0564 0.0488± 0.0027

MSD-SM Node 0.7030± 0.0564 1.0114± 0.1291 0.4340± 0.0617 0.2164± 0.0945

MSD-SM Edge 1.1610± 0.0790 1.3726± 0.2136 0.3029± 0.0594 0.2196± 0.1448

CM - 1.3988± 0.0949 1.4245± 0.1314 0.0984± 0.0654 0.0745± 0.0915

MSD-CM - 0.8736± 0.0654 1.3034± 0.1195 0.4021± 0.0390 0.2254± 0.0966

MM Node 0.6144± 0.1647 1.1348± 0.1649 0.5416± 0.0412 0.1654± 0.0925

MM Edge 0.8117± 0.1054 1.2654± 0.1267 0.4645± 0.0561 0.1714± 0.0729

MSD-MM Node 0.6887± 0.0653 0.9685± 0.1308 0.4971± 0.0712 0.2432±0.0799

MSD-MM Edge 0.8310± 0.1410 1.1892± 0.2271 0.3625± 0.0254 0.2697±0.0910

This means that two results of the bold vales are significantly better than the above results.

As shown in Table 3, MSD-SM receives the RMSE values of
1.0114 and 1.3726 and the CC values of 0.2164 and 0.2196 on the
node and edge features, respectively, achieving better performance
than the conventional SM method. MSD-CM obtains the RMSE
value of 1.3034 and the CC value of 0.2254, which are better
than those of the CM method. MSD-MM yields the best RMSE
values of 0.9685 and 1.1892 and the CC values of 0.2432 and
0.2697 on the two different features. These results indicate three
findings: 1) Compared with the SM-type method, the MM-type
method can jointly select node and edge features and significantly
improve the performance of regression and association analysis; 2)
after introducing multistage diagnosis information, the proposed
MSD-type method consistently outperform their conventional
methods in both RMSE and CC performance measurements;
3) compared with voxel-based morphometry node features, the
functional connectivity edge features between different brain
regions provide more insights for the mechanistic understanding
of MDD; moreover, CM-type and MM-type methods both utilize
node and edge features, but they apply distinct strategies to
combine two features and receive different performance. The CM-
type method directly concatenate node and edge features. This way
may be lost when the relationship information of two modalities
and bring more noise in widespread feature space, while the MM-
type method uses the multi-task strategy (L2,1-norm constrain)
to jointly select node and edge features, which can improve the
robustness of ROIs detection. In a word, our proposed MSD-MM
method yields the best performance on RMSE and CC measures.
That demonstrates that simultaneously considering multi-modality
imaging data and multi-stage diagnosis status can improve the
performances of regression and association analysis between the
imaging phenotype and genotype.

4.3. Identification of the related node ROI
markers from sMRI data

In addition to improving the measure performances of
regression and association analysis, one major purpose of this study

TABLE 4 Top 10 ROIs selected by the node features from sMRI data.

ID ROI name Weight

38 Hippocampus.R 6.78

85 Temporal Mid.L 3.73

92 Cerebelum Crus1.R 3.32

87 Temporal Pole Mid.L 3.05

68 Precuneus.R 2.98

10 Frontal Mid Orb.R 2.78

78 Thalamus.R 2.64

49 Occipital Sup.L 2.03

79 Heschl.L 1.90

12 Frontal Inf Oper.R 1.70

is to identify some significant imaging phenotypes, which are highly
associated with both risk SNP and multi-stage diagnosis status. In
this study, due to the use of multi-modality imaging data, these
identified phenotypes offer the possibility of detecting associations
between the genotype and the brain structure as well as the function
and help researchers further understand the pathogenesis of MDD.

For node features from sMRI data, we averaged the weight
values by five times repeated five-fold cross validations and
selected the top 10 maximum weight ROIs as the significant ROI
markers. Table 4 presents the top 10 selected ROIs from sMRI
data and the corresponding average weight values. Next, these
weight values were mapped onto the human brain, and Figure 2
shows the visualization of the top 10 selected ROIs in all three
planes (sagittal, coronal, and axial). In each plane, the colors
of the labeled brain regions reflect the average weight values of
the corresponding selected ROIs. The remarkable thing is that
most of the selected ROIs are consistent with earlier findings,
which focus on structural images and have already identified
several diagnostic markers of MDD. The literature (26) indicates
that patients with MDD exhibit bilateral volume reduction in
major hippocampal substructures and identify core hippocampal
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FIGURE 2

Visualization of the top 10 ROIs selected by node features in three planes: Three planes of sMRI scan (A), sagittal plane (B), coronal plane (C), and

axial plane (D). The colors represents the average weight values of the corresponding ROI markers. These figures are plotted.

regions in MDD pathology as a potential marker of disease
progression in MDD. Moreover, researchers find that reduced
hippocampal gray matter volume is a common feature of patients

with MDD (27). The bilateral middle frontal gyrus shows that
the amplitude of low-frequency fluctuation (ALFF) significantly
increases in subjects with subclinical depression (16, 28). Structural
abnormalities in the thalamus might be the potential trait marker
of MDD at the early stage as in (29, 30). Compared with healthy
controls, patients with MDD presents decreased gray matter

density in the bilateral temporal pole and right superior temporal
gyrus (31).

4.4. Identification of the related edge ROIs
marker from rs-fMRI data

The brain system can be simply represented by a brain network
model, whose nodes and edges are defined as brain regions and
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TABLE 5 Top 10 ROIs selected by the edge features from rs-fMRI data.

ID ROI name Weight

85 Temporal Mid.L 8.47

32 Cingulum Ant.R 8.05

89 Temporal Inf.L 6.78

68 Precuneus.R 6.52

54 Occipital Inf.R 5.59

38 Hippocampus.R 2.46

33 CingulumMid.L 1.95

35 Cingulum Post.L 1.69

41 Amygdala.L 1.60

30 Insula.R 1.59

connections between brain regions, respectively. In this study, rs-
fMRI data are used to construct the brain functional connectivity
network. After that, the clustering coefficients are extracted as
edge features and are absorbed into each brain region. Thus, the
dimension of the obtained edge features is the same as the number
of the brain regions, and each dimension corresponds to one brain
region. Thus, we can identify the related ROImarkers from rs-fMRI
data by our proposed method.

For edge features from rs-fMRI data, we also averaged the
weight values by five times repeated five-fold cross validations
and selected the top 10 maximum weight ROIs as the significant
ROI markers, as shown in Table 5. Some existing studies using rs-
fMRI data have identified several diagnostic brain region markers
for MDD, such as precuneus, cingulum and temporal, which are
also consistent with the aforementioned selected relevant ROIs.
The study (32) shows that guilt-selective to MDD is associated
with functional disconnection of anterior temporal and subgenual
cortices. Patients with MDD have an abnormal activity of the
precuneus at the resting state in first-episode drug-naive. This
indicates that activity within the precuneus may be a potential
biomarker for the diagnosis of MDD (33). In literature (34),
the increased fractional amplitude of low-frequency fluctuation
(fALFF) in the left mid cingulum, right precuneus, and left
superior frontal gyrus may serve as a neuroimaging marker for
first-episode MDD. The combined use of the increased fALFF
in the right precuneus and left superior frontal gyrus obtains
the best diagnostic scores. Compared to patients with remitted
MDD and to healthy controls, patients with recurrent MDD
exhibit decreased fALFF in the right posterior insula and right
precuneus and increased fALFF in the left ventral anterior cingulate
cortex (35).

Moreover, in order to analyze the functional connectivity of
selected brain regions and graphically compare the difference on
the functional connectivity network between patients with MDD
and HCs, we selected the maximum weight ROI (left temporal)
and the minimum weight ROI (right Insula) in Table 4 and
then calculated the average edge values of functional connectivity
network for MDD and HC group, respectively. Specifically,
we first constructed the functional connectivity networks of
each subject in MDD and HC group. After that, the average

functional connectivity networks were calculated for each group.
Finally, we selected seven edges with the highest connection
values from all edges of a given brain region (14). Figure 3
graphically presents the top seven average connection value edges
on maximum and minimum weight ROIs. As seen in Figure 3,
compared to the HC group, the edges of maximum weight
ROI in the MDD group have a distinct change, which is that
the edge connecting right temporal middle and right frontal
superior medial is replaced to the edge connecting right frontal
superior medial and left temporal pole superior. However, the
edges of the minimum weight ROI in the MDD group are
same as those in the HC group. The aforementioned results
it demonstrate that the identified significant brain regions (the
maximum weight ROI) are highly correlated to the pathogenesis
of MDD.

4.5. Identification of the consistent ROIs
from multi-modality imaging data

In addition, for identifying some significant ROIs from node
and edge features, another advantage of our proposed method
is to ensure that these identified brain regions are consistent in
both node and edge features. Figure 4 shows all comparisons of
weight maps for multi-modality data on 116 ROIs associated with
risk SNP TPH1 rs11179027. As seen in Figure 4, SM-based and
CM-based methods select a large number of ROIs, while these
ROIs are inconsistent across node and edge features. This means
that researchers find it hard to use the selected ROIs for further
investigation. However, the MSD-MM method is able to identify
sparse and consistent ROIs associated with THP1 rs11179027 using
multi-modality imaging data. These identified ROIs, such as left
temporal, right hippocampus, and right precuneus parts, strongly
agree with the existing studies and are highly correlated with
MDD (26, 27, 33, 37, 38). To sum up, our proposed method
tends to select consistent ROIs associated with risk SNP across
multi-modality imaging data, which show a great value to further
investigate the mechanism of MDD.

4.6. Identification of new risk SNPs
associated with MDD

As is well-known, the pathogenesis of MDD may be caused by
a large number of genetic risk SNPs. However, we only explored the
relationship between two brain network features and a givenMDD-
risk SNP, THP1 rs1799913 in the aforementioned experiments
and then identified some significant brain ROIs associated with
this SNP. Results demonstrate that our proposed method can
be used as an effective tool to mine new risk SNPs associated
with MDD. In this study, the genotype data contains 5879 SNPs.
In this study, we performed the MSD-MM method for each
SNP in the whole genotype data. Table 6 shows that four SNPs
have similar correlation coefficient with THP1 rs1799913 on node
and edge features, respectively. This means that four SNPs may
be risk genetic SNP associated with MDD. The literature (39)
presents that PIK3R1 rs3730089 is related to schizophrenia and
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FIGURE 3

The edges of the maximum weight ROI (A) and minimum weight ROI (B) on the MDD (left) and HC (right) group. The centroid red node represents

the selected ROI, and the blue node denotes the corresponding ROI linked by top seven average connection value edges. (A) MTG.L, Temporal Mid

gyrus.L; MTG.R, Temporal Mid.R; ANG.L, Angular.L; SFGdor.L, Frontal Sup.L; SFGmed.L, Frontal Sup Medial.L; SFGmed.R, Frontal Sup Medial.R;

ORBinf.L, Frontal Inf Orb.L; TPOmid.R, Temporal Pole Mid.R; TPOsup.L, Temporal Pole Sup.L; (B) INS.R, Insula.R; INS.L, Insula.L; HES.R, Heschl.R;

ROL.L, Rolandic Oper.L; ROL.R, Rolandic Oper.R; STG.L, Temporal Sup.L; STG.R, Temporal Sup.R; TPOsup.R, Temporal Pole Sup.R. In the figure, all

edges of each brain figure are plotted by BrainNet (36).

bipolar disorder in the Han Chinese population, but patients with
schizophrenia, bipolar disorder, and MDD usually show common
symptoms, such as anhedonia and amotivation. Recent research
studies systematically report that these three mental disorders
have a familial clustering character and any two or even three
of these disorders could co-exist in some families. In addition,
evidence from symptomatology and psychopharmacology also
imply that there are intrinsic connections between these three
mental disorders (40). Thus, PIK3R1 rs3730089 may be a risk SNP
marker in MDD research. Meanwhile, although KDSR rs1138488,
LAMA2 rs2229848, and THY1 rs3138094 receive fine correlation
coefficients by the MSD-MMmethod, now there are no medical or
biological research studies that directly support three SNPs related
to MDD, and we expect that to be verified in future studies. We
hope that these new MDD-risk SNPs will be verified in future

studies and give more insights to understand the pathogenesis
of MDD.

5. Discussion

5.1. Risk MDD SNP vs. non-disease related
SNP

In the SNPedia database, TPH1 rs1799913 has been confirmed
as a genetic risk variant associated with MDD. We evaluated the
performance of regression and association analysis on the risk SNP
TPH1 rs1799913 by the MSD-MM method in the aforementioned
experiments, as shown in Table 3. To verify that the improvement
is brought by only using the risk MDD SNP, we further selected
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FIGURE 4

Weight maps for the multi-modality imaging data on 116 ROI associated with SNP THP1 rs1799913 respect to di�erent methods.

three non-MDD related SNP for comparison. TPH2 rs11179027 is
the nearest SNP to TPH1 rs1799913 (41), APOE rs429358 is a well-
known top risk SNP associated with AD (42), and AKT3 rs14403 is
a genetic risk SNP for schizophrenia (43). The MSD-MM method
evaluated correlation coefficients of three non-MDD related SNPs,
and results of all comparisons on the test dataset are shown in
Table 7. Compared to the risk SNP THP1 rs1799913 reported in
Table 3, all comparisons (including MSD-MM method) receive
very low correlation coefficient values. The reason of the poor
performance is that the train data containing the non-related
MDD SNP lead to an overfitting problem for all comparisons
and then lose the power of generalization on the test data. Thus,
the contrast experiment shows that the learned consistent multi-
modality imaging phenotypes if and only if using the risk MDD
SNP can discovery the potential biological pathway from gene to
the brain for clinical diagnosis.

TABLE 6 Correlation coe�cient of four new SNPs on node and edge

features by the MSD-MMmethod.

SNPs Edge Node

rs3730089 (PIK3R1) 0.2033± 0.1300 0.2118± 0.0355

rs1138488 (KDSR) 0.2032± 0.0945 0.2209± 0.0245

rs2229848 (LAMA2) 0.2143± 0.1003 0.2170± 0.1370

rs3138094 (THY1) 0.2248± 0.1233 0.2235± 0.1281

5.2. The selection of regularization
parameters

Our proposed method, MSD-MM, contains two regularization
parameters, the sparsity parameter λ1 and the multi-stage diagnosis
information parameter λ2. The two parameters was used to balance
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the relative contributions of three terms in Equation (5). In order to
research the effect of two regularization terms on the performance
of our proposed method, we set the values of two parameters
in the range of 10−4, 3× 10−4, 10−3, 3× 10−3, ..., 1, 3, respectively.
Figure 5 shows the heat maps of correlation coefficients between
parameters λ1 and λ2 on the test data. As shown in Figure 5, the
MSD-MMmethod achieved the competitive or better performance
than the MM method (reported in Table 3) on all combinations
of parameter values, which further indicates the advantages of the
multi-stage diagnosis information regularization term. Meanwhile,

TABLE 7 Correlation coe�cients of all comparisons for three non-MDD

related SNPs on the test data.

Method rs11179027 rs429358 rs14403

SM Node 0.0102± 0.0951 −0.0239± 0.0236 0.0933± 0.0320

SM Edge −0.0323± 0.1005 0.0482± 0.0319 0.0209± 0.0334

MSD-
SM

Node 0.0290± 0.1118 −0.0254± 0.0282 0.0089± 0.0101

MSD-
SM

Edge −0.0199± 0.1366 0.0358± 0.0234 0.0357± 0.0176

CM - 0.0156± 0.0991 0.0431± 0.0341 0.0298± 0.0425

MSD-
CM

- 0.0095± 0.1668 0.0525± 0.1934 0.0290± 0.2443

MM Node 0.0346± 0.0160 -0.0565± 0.0349 0.0233± 0.0218

MM Edge −0.0211± 0.1519 0.0323± 0.1843 0.0179± 0.0024

MSD-
MM

Node 0.0344± 0.1274 −0.0887± 0.0034 0.0445± 0.0367

MSD-
MM

Edge −0.0104± 0.1351 0.0522± 0.0337 0.0603± 0.0285

the areas were bounded by λ1 < 0.1 and 0.01 < λ2 < 0.3
consistently and obviously outperformed than the MM method on
node and edge futures. This area was helpful to quickly select the
optimal the values of two parameters in future research.

6. Conclusion

In summary, this study developed a novel imaging genetic
association framework to mine the multi-modality phenotype
network between a single genetic risk SNP and multi-stage
diagnosis status. First, the multimodality phenotype network is
constructed by the voxel node features and connectivity edge
features from sMRI and rs-fMRI, respectively. After that, an
association model incorporated multi-stage diagnosis status is
used to fully explore the relationship between the MDD-risk
SNP TPH1 rs1799913 and the multi-modality phenotype network.
All participants were recruited from two hospitals, and each
participant contains sMRI, rs-fMRI, and genotype data. The
detailed experimental results show that our proposed method can
improve the performance on the metrics of root mean squared
error and correlation coefficient compared with other comparisons.
Some consistent and stable ROIs biomarkers are identified from
voxel node features and connectivity edge features of multi-
modality phenotype network. Moreover, an interesting finding is
that four new and risk SNPs were discovered highly associated
with MDD.

This study is an initial attempt to explore the relationship
between a single genetic MDD-risk SNP and multi-modality brain
neuroimaging data (sMRI and rs-fMRI). In future, we further
investigate the use of other modality brain imaging (e.g., DTI) to
directly construct the multi-modality graphical phenotype network

FIGURE 5

(A, B) The heat maps of correlation coe�cients between parameters λ1 and λ2 on node and edge features.
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and mine relationship between multi-modality phenotype network
and multi-locus risk SNPs. We hope that more meaningful results
are discovered to deeper understand the pathogenesis of MDD and
help the diagnosis and treatment of patients with MDD.
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